
07-03-2024

Manual OTYS web services (OWS)

Version 1.4

A manual for external parties integrating with OTYS

to exchange (retrieve, add, update & delete)

data using the OTYS web services.

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 2

Version management

Below you will find an overview of the versions available for this document.

Version Date Author Description

1.0 20-05-2022
-
03-06-2022

Bastiaan Brans Created initial version of document, including three
chapters: ‘General’ (chapter 1), ‘Basic requests’ (chapter
2) & ‘File management’ (chapter 3).

1.1 15-07-2022 Bastiaan Brans Updated ‘OTYS Recruiting Technology’ (paragraph 1.1)
based upon current situation. Updated ‘File
management’ (chapter 3) so that the endpoint is
consistent with the endpoint mentioned in chapter 2.

1.2 17-05-2023 Bastiaan Brans Added information to force an OWS request to be
executed in a specific content language in ‘Content
languages’ (paragraph 2.6).

1.3 27-02-2024 Bastiaan Brans Added information on how to create hashed links to
OTYS hosted portals (paragraph 2.9).

1.4 07-03-2024 Bastiaan Brans Added information on how to retrieve deduplication
data for candidates (paragraph 2.10).

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 3

Contents

Version management .. 2

Contents .. 3

1. General .. 5

1.1 OTYS Recruiting Technology .. 5

1.2 OTYS Go! Partner Framework ... 5

1.2 OTYS web services ... 6

1.4 About this document ... 7

2. Basic requests .. 8

2.1 Needed credentials ... 8

2.2 Endpoints ... 8

2.3 Authentication ... 9

2.3.1 Retrieve session token ... 9

2.3.2 Check session .. 9

2.3.3 Log out .. 11

2.3.4 Session management ... 11

2.4 Data service & field definitions ... 12

2.5 Basic methods ... 14

2.5.1 Introduction .. 14

2.5.2 Search & retrieve a list of records .. 14

2.5.3 Retrieving a specific record .. 17

2.5.4 Adding new records .. 18

2.5.5 Updating existing records ... 19

2.5.6 Deleting records ... 20

2.6 Content languages ... 21

2.7 Option lists ... 23

2.8 Retrieving specific requests using OTYS Go! ... 24

2.9 Create hashed links to OTYS hosted portals.. 25

2.10 Retrieve candidate deduplication data ... 27

3. File management ... 30

3.1 Uploading files ... 30

3.1.1 Concept... 30

3.1.2 Examples using Postman .. 35

3.2 Downloading files .. 38

3.2.1 Concept... 38

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 4

3.2.2 Examples using Postman .. 40

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 5

1. General

In this chapter we will provide you some generic information about OTYS, the OTYS Go! Partner
framework and the OTYS web services (OWS).

1.1 OTYS Recruiting Technology

OTYS Recruiting Technology (hereafter ‘OTYS’) develops, maintains and optimizes software for
around 1.000 clients worldwide. The core of this software is created for recruiting purposes
(agencies, corporate recruitment & job boards).

The most important elements of the OTYS solution are:

• OTYS Go!
This is a browser based software solution in which the main users (for example recruiters) of
the client work on a daily basis. Each client has a client specific URL from which they access
OTYS Go! (https://clientprefix.otysapp.com). Users then login using either their OTYS
username & password or using an external SSO option (for example Azure). After they are
logged in, they will have access to the modules & functionalities based upon the permissions
assigned to their account.

• Website
In most cases the client also has one or multiple websites linked to their system. This is
normally a website which is publicly available (so that the company can for example use it to
show & tell more about their company and publish their jobs), with some portals behind a
login (for candidates, customers, hiring managers and/or suppliers). This website will interact
with the OTYS system and can do so in several ways (for example the main website build,
hosted & maintained by a third party and portals build, hosted & maintained by OTYS).

1.2 OTYS Go! Partner Framework

OTYS believes it should focus on the elements they excel in and that their focus should be on just
that. Other parties are able to do other things better and OTYS believes that their clients are best
helped by having a ‘best of breed’-solution using partners. To support this ‘best of breed’-solution for
both clients & partners, OTYS created the ‘OTYS Go! Partner framework’ which allows partners to
easily connect to the OTYS solution and provide users a nice (seamless) experiences.

The OTYS Go! Partner framework consists of the following elements:

1. OTYS Web Services (OWS)
OTYS has very extensive web services to connect to the OTYS system. Where other similar
parties have web services as an ‘add on’ to their own application (with normally limited
capabilities), OTYS chose to create a web service layer which is an integral part of their
current software solution. All actions users take through the user interface (OTYS Go!) are
done by OWS request, thus allowing external parties to connect with the web services and
(technically) be able to do all the things end users are able to do through the GUI.

2. OTYS Go! Partner OWS Webhooks
If an external party connects to OTYS using OWS, there is always some kind of 'trigger' to
exchange data. If this trigger should be based upon a user action in OTYS Go! (for example a
user changing a status) , it is possible to create OWS webhooks. If configured, the partner can
receive an ‘active signal’ that a user is taking the action. This way as a partner you are able to
‘instantly’ start a process if for example a user changes a status in the OTYS Go! system.

http://www.otys.nl/
https://clientprefix.otysapp.com/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 6

3. OTYS Go! Partner SSO
If an OTYS Go! user interacts with a partner functionality, it is probably a wise thing to add
some kind of authentication. Larger clients will probably have an Active Directory (such as
Microsoft Azure) set up to make user management & authentication work smoothly. Smaller
clients will probably not have set this up, so for those we created an OTYS Go! Partner SSO
functionality, which allows partners to automatically sync users with OTYS Go! users and to
easily authenticate users using Single Sign On (with OTYS being the ‘Active Directory’).

4. OTYS Go! Partner widgets
In some cases a partner wants to be able to show data from their own system to users of
OTYS Go! within the context of OTYS Go! (for example show additional information you have
about a candidate within an OTYS Go! candidate detail). You might even want to add some
‘interaction’ in this context (for example a button to click or a form to be submitted). For
these kinds of scenarios we have created OTYS Go! Partner widgets, which allows partners to
provide iframe-ish content which can be loaded directly into the right context in OTYS Go!

5. OTYS Go! Partner custom actions
The above mentioned OTYS Go! Partner widgets can be of great added value if you want to
show some information within the context of OTYS Go!, however if you have more complex
(‘full blown’) interfaces or simply want to ‘trigger a specific action’, the widgets might not be
the best choice. For these kinds of interactions we have created ‘OTYS Go! Partner custom
actions’ which allows partners to create custom buttons which can be added on various
places in the OTYS Go! system (for example in a candidate detail). Clicking this button will
open a URL on your side (with for example the candidate OUID as a parameter) in the current
browser tab, a new browser tab, a modal, an overlay or on the background.

1.2 OTYS web services

OTYS has very extensive web services (called ‘OTYS web services’ or simply ‘OWS’) to connect to the
OTYS system. Where other similar parties have web services as an ‘add on’ to their own application
(with normally limited capabilities), OTYS chose to create a web service layer which is an integral part
of their current software solution. OWS is available in both JSON-RPC format as XML-RPC format.

All actions users take through the user interface (OTYS Go!) are done by OWS requests using the
JSON-RPC service, thus allowing external parties to connect with the web services and (technically)
be able to do all the things end users are able to do through the GUI.

OWS can be used for all kinds of database interactions, including creating websites for OTYS clients
that ‘interact’ with the OTYS website. This way an external web builder is for example able to retrieve
all published or specific vacancies to include on the website.

Most requests done through OWS are done for retrieving, adding, updating or deleting records (for
example a request to retrieve published vacancies or a request to create a new candidate). It is also
possible to retrieve & upload files (for example a candidates CV) and link them to specific database
records (for example a candidate). This process of retrieving & uploading files and connecting them
to the correct database records works a bit ‘different’ from other OWS methods and is therefore
specifically mentioned in a separate chapter.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 7

1.4 About this document

This document describes how you can use the OTYS web services (OWS) to exchange (retrieve, add,
update & delete) data. It is divided into the following three chapters:

1. General
In this chapter we will provide you some generic information about OTYS, the OTYS Go!
Partner framework and the OTYS web services (OWS).

2. Basic requests
In this chapter we will go through some ‘OWS basics’ like the different versions we have, how
to authenticate and how some basic requests (like retrieving, adding, updating & deleting
data) look like.

3. File management
As mentioned above the process of retrieving & uploading files and connecting them to the
correct database records works a bit ‘different’ from other OWS methods and is therefore
specifically mentioned in this chapter.

At a later stage we will add a fourth chapter, which will provide you with some example use cases
with relevant requests.

If you have feedback about this document, we would love to hear it from us. Please send us an email
at partners@otys.com and provide us your feedback.

http://www.otys.nl/
mailto:partners@otys.com

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 8

2. Basic requests
In this chapter we will go through some ‘OWS basics’ like the different versions we have, how to

authenticate and how some basic requests (like retrieving, adding, updating & deleting data) look

like. Based upon this chapter you should be ‘good to go’ to start building your integration with OTYS

using our OTYS web services.

2.1 Needed credentials
To be able to authenticate, you will of course need credentials. To be able to integrate with OTYS

using OWS, you will need the following credentials:

• API key

The API key is needed to obtain a session token (see paragraph 2.3) which is needed to do

follow up requests to exchange data.

• Username & password

The API key is linked to a specific user in the OTYS system (and therefore has the same

permissions as this user). This user has a username & password and this username/password

can be for example used to retrieve a list of field definitions or log into OTYS Go!

• OTYS Go! URL

Each OTYS client has a client specific domain (https://[clientcode].otysapp.com) which is

used to login to the OTYS Go! application. You can use this URL and the above mentioned

username & password log into the OTYS Go! GUI to get an understanding of how the OTYS

system works ‘from a user perspective’ (and intercept example OWS requests).

Normally a client will request the credentials mentioned above from OTYS, OTYS will send the

credentials to the client and the client can forward the credentials to you.

2.2 Endpoints
The OTYS web services (OWS) is available in two protocols (JSON-RPC & XML-RPC). Each protocol has

its own endpoint and is used for all normal data exchange (retrieving, adding, updating & deleting

records like ‘candidates’, ‘vacancies’ & ‘customers’). Specifically for uploading & downloading files

we have a third endpoint (which you will have to use when ‘working with files’ whether you use the

JSON-RPC or XML-RPC protocol). The endpoints for these services are:

• JSON-RPC service

For requests & responses in JSON format, endpoint: https://ows.otys.nl/jservice.php

• XML-RPC service

For requests & responses in XML format, endpoint: https://ows.otys.nl/service.php

• File service

For multipart form-data requests (for uploading files) or HTTP requests (for downloading

files), endpoint: https://ows.otys.nl/fileService.php

We strongly advise you to use the JSON-RPC version; since it is the version both most partners and

ourselves prefer (OTYS Go! uses JSON-RPC). Therefore all example requests in this manual, example

requests intercepted from OTYS Go! and most other examples we have are in JSON format. If you

have good reasons to choose XML-RPC, you can of course use the XML-RPC version; however keep

the above in mind.

http://www.otys.nl/
https://[clientcode].otysapp.com/
https://ows.otys.nl/jservice.php
https://ows.otys.nl/service.php
https://ows.otys.nl/fileService.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 9

2.3 Authentication
As mentioned in paragraph 2.1 you should have received an API key. Using this API key you can

‘prove you are good people’ and retrieve a ‘session token’. Using this session token you can do follow

up requests (such as retrieving vacancies & creating candidates).

2.3.1 Retrieve session token
So it is time for your very first OWS request. You can retrieve a session token by sending the

following request to endpoint https://ows.otys.nl/jservice.php (which is also the endpoint for all

other example requests mentioned in this chapter):

{

 "jsonrpc": "2.0",

 "method": "loginByUid",

 "params": [

 "[apikey]"

],

 "id": 1

}

In the request above:

[apikey] Is the API key provided by OTYS.

If you have provided a valid API key, you will get the following response:

{

 "result": "[sessiontoken]",

 "id": 1

}

In the response above:

[sessiontoken] Is the session token of the created session which you can use in follow up

 requests.

2.3.2 Check session
Now you have a session token, it is kind of nice to use it. A very simple way to do so is to ‘check’ your

session token. You will provide a session token and we will tell you if it is valid and -if it is- provide

you information about the user & client connected to the session. You can check your session by

sending the following request:

{

 "jsonrpc": "2.0",

 "method": "check",

 "params": [

 "[sessiontoken]"

],

 "id": 1

}

http://www.otys.nl/
https://ows.otys.nl/jservice.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 10

In the request above:

[sessiontoken] Is the session token previously retrieved.

If you have provided a valid session token, you will get quite an extensive response with quite a lot of

field about the user & client connected to your current session. To keep things simple, we will show

you a simplified request below with the most important fields of this response:

{

 "result": {

 "clientId": [clientid],

 "client": "[clientname]",

 "id": [userid],

 "username": "[username]",

 "email": "[useremail]",

 "contentLanguages": [

 "[contentlanguage]"

],

 "defaultContentLanguage": "[defaultcontentlanguage]"

 },

 "id": 1

}

In the response above:

[clientid] This is the numeric ID of the OTYS client (for example ‘1234’). If you integrate

 for multiple OTYS clients, this is probably the best field to distinguish the

 individual clients.

[clientname] This is the name of the OTYS client (for example ‘Recruitment Heroes’). If you

 are a human being, this is probably the easiest way to identify the client.

[userid] This is the numeric ID of the OTYS user (for example ‘12345’). If you integrate

 for multiple OTYS users, this is probably the best field to distinguish the

 individual users.

[username] This is the username of the OTYS user connected to the session token (for

 example ‘partnerxyz.recruitmentheroes’. If you want to log into OTYS Go! as

 the same user, this is probably the best way to identify the linked user.

[useremail] This is the (main) email address of the OTYS user (for example

 ‘partner@recruitmentheroes.nl’). If you are a human being, this is probably

 the easiest way to identify the user.

[contentlanguage] The OTYS system allows users to store some data in multiple languages. This

 way for example one vacancies can be created in multiple languages (so that

 it is technically one vacancy with multiple language versions). This shows the

 available content languages for this client/user in ISO 639-1 format. Please

 note this is an object which can contain one or multiple content languages

[defaultlanguage] This is the default content language of the user. If the user would log into

 OTYS Go!, this would be the content language which is ‘by default selected’.

 A user needs to take a specific action to ‘switch’ to a different content

 language.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 11

2.3.3 Log out
If you are finished using an software application (for example OTYS Go!) and you are a ‘good citizen’;

you will of course log out of the application. If you are finished using OWS (and you are a ‘good

citizen’) it is of course good to log out of OWS / kill your session. You can do so, by sending the

following request:

{

 "jsonrpc": "2.0",

 "method": "logout",

 "params": [

 "[sessiontoken]"

],

 "id": 1

}

In the request above:

[sessiontoken] Is the session token of the created session which you can use in follow up

 requests.

If you have provided a valid session token, you will get the following response:

{

 "result": true,

 "id": 1

}

The session is now not valid anymore and you are ‘logged out’. If you send another request with the

same session token (for example logging out for a second time, you will get the following response):

{

 "error": {

 "message": "Access denied; please login first",

 "code": 0

 },

 "id": 1

}

2.3.4 Session management
To make sure session handling is implemented correctly in your integration, as mentioned above:

• You can provide your API key and retrieve a session token using service call ‘loginByUid’;

• You can check your current session using service call ‘check’;

• You can log out / kill your session using service call ‘logout’.

Please make sure this logic is in your application. As the word says a ‘session’ is considered to be a

‘session’. We have had partners in the past which (initially) manually created a session token and

stored the session token in their application which at some point can result in the above mentioned

‘Access denied; please login first’-message. Sessions can at some point not be valid anymore (for

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 12

example by another process ending the session or by OTYS automatically killing a session after a

period of inactivity). Additionally, some things (for example the ‘current content language’) can be

linked to a session.

The ’best way’ to integrate with OTYS is to have a single process (which uses a ‘queue’) to handle all

OWS requests for a specific API key. This way you can (a) start the session, (b) execute follow up

requests in the desired order and (c) end the session when done.

2.4 Data service & field definitions
We have an extensive list of available data services & field definitions. This list might feel a bit

overwhelming the first time you open it, but fortunately we have an easy way to pinpoint specific

data services & fields (more about that later in this chapter).

However, one way or the other, it is good to have an overview of these available data services & field

definitions. If you for example have some basic request (for example to create a new candidate) and

are looking for some specific field which might not be in that request, you can check our online list of

data services and fields that are part of OWS.

You can access this list by opening the following URL in your browser:

https://ows.otys.nl/info/

After opening the URL, you are prompted to enter a username & password. Here you are able to

enter the username & password received from OTYS. Once you have provided that, you will see a list

of over 400 data services (for example ‘Otys.Services.CandidateService’ for the data service which

allows you to exchange the main candidate data). If you click on a data service, you will see the field

definitions of that specific data service (so for example the one of the main candidate data).

For every field you will see the following information:

• Name

This is the name of the field which you can use when defining which fields you want to be

returned (‘what’), which records you want to be returned (‘condition’) and how you want

records to be ordered ('sort’).

• Type

This is the data type of the field (for example ‘string’, ‘boolean’ or ‘datetime’) so that you

know in which data format you should send the information and what you can expect when

receiving data.

• Listable

This checkbox will be ‘checked’ if you can retrieve the field when getting a list of items using

the getList(Ex)-method. If a filed is not listable, you will need to do an additional request

(probably a getDetail) to retrieve the additional fields.

• Filterable

This checkbox will be ‘checked’ if you can filter based upon this field using the getList(Ex)-

method as a ‘condition’.

• Sortable

This checkbox will be ‘checked’ if you can order based upon this field using the getList(Ex)-

method as a ‘sort’.

• Updatable

This checkbox will be ‘checked’ if you can update this field. Most fields are updatable,

http://www.otys.nl/
https://ows.otys.nl/info/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 13

however there are some fields which are ‘view only’ or require special methods to update

the fields.

• Obligatory

This checkbox will be ‘checked’ if the field is mandatory (and should be filles, so not ‘null’)

when creating new records using the add-method.

• Deletable

This checkbox will be ‘checked’ if you can ‘delete’ the field’. This is normally only the case for

‘collection’ fields. It is for example not possible to ‘delete’ the candidates first name (you can

of course update it so that it becomes empty), but you can delete one of the candidates work

experience items.

• Insertable

This checkbox will be ‘checked’ if you can define this field when inserting a new record using

the add-method. If a field is not insertable but is updatable (most times for technical reasons

because something first needs to be ‘there’ before we can update it) you can insert the

record without this field and then do another request to update the created record so that

the field is filled for the newly created record.

• Has options

This checkbox will be ‘checked’, the field will have specific options. You can therefore not

simply send ‘some data’ but should specific option (normally an ID) and will get that returned

as well. In paragraph 2.7 you will find how you can retrieve the options of these fields.

• Not empty

This checkbox will be ‘checked’ if the field cannot be included ‘empty’ when creating new

records using the add-method or updating existing records using the update-method

(however you can exclude them from the request as a whole).

• Has hints

This is a deprecated functionality and not relevant for partner integrations.

• In list by default

If you retrieve a list of items, you should normally define which fields you would like to

receive using the ‘what’-object. If you do not define which fields you want to get returned,

we will return the fields which are set to be shown in lists by default. However, we strongly

(strongly!) advice you to define which fields you want to have returned since it will make the

integration faster (only retrieving data you actually need) and more stable (if there are

changes to the default fields this cannot break your current integration).

• Data type comment

In this field we can give some more information about the data type of the field (for example

if it is a ‘datetime’ field, the format of the datetime).

• Comment

In this field we can give you some additional comments about the field which can be

‘technical things to keep in mind’ or more functional things.

Please note that fields with type ‘collection’ & ‘container’ are by default collapsed in the field

definition list. You will see an arrow-icon on the left side of the field. Clicking on this icon will expand

the field, showing the underlaying fields (which can also include collection/container fields which will

then again by default be collapsed). So if you are a bit overwhelmed by opening the field definition

list of for example our CandidateService, you will probably be even more overwhelmed after

expanding all collections & containers.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 14

2.5 Basic methods

2.5.1 Introduction
Now you have seen the extensive list of available data services & fields (and might be a bit

overwhelmed by them), let’s make things a bit more simple by going through some basic methods.

Although data services can have many (very specific) methods, there are some basic methods which

are supported by most data services and which you will use in most use cases. These methods are:

• getList(Ex)

To retrieve a list of record (for example all candidates with a specific main status).

• add

To create a new record (for example create a new candidate).

• update

To update an existing record (for example update an existing candidate).

• delete

To delete an existing record (for example delete an existing candidate).

You will use this method in combination with the relevant data service. So if you for example:

• Want to list candidates, you will use ‘CandidateService.getList(Ex)’;

• Want to add a vacancy you will use ‘VacancyService.update’;

• Want to update a customer / relation you will use ‘RelationService.update’;

• Want to delete a customer / relation contact person you will use

‘RelationContactService.delete’.

We will use the CandidateService (so listing, adding, updating & deleting candidates) as an example

for some basic requests.

2.5.2 Search & retrieve a list of records
As you can see, this is the only method where we placed something in between parentheses,

because there are two methods to retrieve a list of records: ‘getList’ and ‘getListEx’.

The methods ‘getList’ & ‘getListEx’ are both very similar, however the method ‘getListEx’ has some

additional possibilities including getting a total count. This way you can for example retrieve

candidates with a specific main status ordered by entry date descending (so from new to old),

retrieve the first 100 items AND get a total count. This way you will only retrieve the first 100

candidates, but also get a total count back of the total amount of candidates with that main status;

allowing you to do the right amount of additional requests to retrieve all items OR to create a nice

page navigation in your application showing live data.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 15

A basic getListEx request retrieving data will be as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.CandidateService.getListEx",

 "params": [

 "[sessiontoken]",

 {

 "what": {

 "uid": 1,

 "Person": {

 "firstName": 1,

 "lastName": 1

 }

 },

 "condition": {

 "type": "AND",

 "items": [

 {

 "type": "COND",

 "field": "userId",

 "op": "EQ",

 "param": "[userid]"

 },

 {

 "type": "COND",

 "field": "statusId",

 "op": "NE",

 "param": "[statusid]"

 }

]

 },

 "sort": {

 "Person.lastName": "ASC",

 "Person.firstName": "ASC"

 },

 "limit": 100,

 "offset": 0,

 "getTotalCount": 1

 }

],

 "id": 1

}

As you can see, this request consists of the following basic structure:

• Method

It will define the method (in this case ‘Otys.Services.CandidateService.getListEx’), so that we

know you are requesting a list of candidates.

• Authentication

It will then pass the session token you have received during the authentication process, so

that we know you are ‘good people’ (and can provide the correct records).

• What

It will then pass a ‘what’ object to define which fields you want to returned for every record

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 16

(in this case UID, first name & last name). To make integrations as fast & stable as possible,

please make sure to only retrieve fields that you actually need.

• Condition

It will then pass a ‘condition’ object to define conditions, so that we know which records to

return (in this case all candidates that have a specific userId/owner and that do NOT have a

specific statusId/main status). If you do not provide this conditions object, we will return all

available records. As you can see it is possible to combine multiple conditions in AND/OR

structures. The available operators (‘op’) are (please note not all operators are available for

all field types:

o EQ: field is equal to parameter

o NE: field is not equal to parameter

o GE: field is greater or equal the parameter

o GT: field is greater than parameter

o LE: field is less or equal than parameter

o LT: field is less than parameter

o T: boolean field is true

o F: boolean field is false

o LIKE: matching a pattern

o NLIKE: not matching a pattern

• Ordering

If will then pass a ‘sort’ object to define sorting/ordering (in this case on candidate last name

& first name ascending), so that we know in which order you would like to receive the

results. Of you do not provide this sort object, we will return the records in some predefined

order (normally ID, but can differ per service). As you can see it is possible to order on

multiple fields, with per field the following ordering options:

o ASC: field is ordered ascending (from A to Z, from small to large, from old to new)

o DESC: field is ordered descending (from Z to A, from large to small, from new to old)

• Limiting

It will finally define which records it will return (in this case the first 100 records including a

total count), so that we know which records from the full results you want to receive. Please

note that most services provide a maximum of 200 results per request (so setting ‘limit’

higher than ‘200’ will still return 200 results). If in the response of the request above you

receive the first 100 records and a total count of 350, you know you will need to make three

additional requests (offsets 100, 200 & 300) to retrieve all 350 candidates.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 17

The request above will result in a response as follows:

{

 "result": {

 "listOutput": [

 {

 "uid": "[uid]",

 "Person": {

 "firstName": "[firstname]",

 "lastName": "[lastname]"

 }

 }

],

 "searchExtras": [],

 "totalCount": [totalcount]

 },

 "id": 1

}

The items in the listOutput object are of course recursive (and can contain 0, 1 or multiple records),

with as a maximum the set ‘limit’. The [totalcount] will show you the total count, allowing you to do

the right amount of additional requests to retrieve all items OR to create a nice page navigation in

your application showing live data.

2.5.3 Retrieving a specific record
A basic update request to retrieve a specific existing record will be as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.CandidateService.getDetail",

 "params": [

 "[sessiontoken]",

 "[candidateouid]",

 {

 "Person": {

 "firstName": 1,

 "lastName": 1,

 },

 "statusId": 1,

 "userId": 1

 }

],

 "id": 1

}

As you can see, this request consists of the following basic structure:

• Method

It will define the method (in this case ‘Otys.Services.CandidateService.getDetail), so that we

know you want to retrieve a specific existing record.

• Authentication

It will then pass the session token you have received during the authentication process, so

that we know you are ‘good people’.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 18

• Record ID

Since you are requesting a specific existing record, we want to know which record you want

to retrieve. In this case (for retrieving a candidate), you will need to provide the candidate

OUID.

• Fields

It will then pass the fields which you want to retrieve. Normally you would only provide us

fields that you actually want to be changed (fields that are not provided will stay intact).

The request above will result in a response as follows:

{

 "result": {

 "Person": []

 },

 "id": 1

}

2.5.4 Adding new records
A basic add request to add a new record will be as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.CandidateService.add",

 "params": [

 "[sessiontoken]",

 {

 "Person": {

 "firstName": "[firstname]",

 "lastName": "[lastname]"

 },

 "statusId": [statusid],

 "userId": [userid]

 }

],

 "id": 1

}

As you can see, this request consists of the following basic structure:

• Method

It will define the method (in this case ‘Otys.Services.CandidateService.add’), so that we know

you are creating a new candidate.

• Authentication

It will then pass the session token you have received during the authentication process, so

that we know you are ‘good people’. In most cases if you create a new record and do not

assign an owner of the newly created record (in this case ‘userId’) we will make the user

linked to your API key the owner.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 19

• Fields

It will then pass the fields which are needed to create the record, so that we ‘fill in all fields’

as desired.

The request above will result in a response as follows:

{

 "result": "[id]",

 "id": 1

}

In most cases when creating a new record, we will provide you with the ID of the created record in

the response. This way if you need to do follow up actions (for example link the created candidate to

a vacancy) or want to store it in your database (allowing you to sync items) you have the record ID to

do so.

2.5.5 Updating existing records
A basic update request to update an existing record will be as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.CandidateService.update",

 "params": [

 "[sessiontoken]",

 "[candidateouid]",

 {

 "Person": {

 "firstName": "[firstname]",

 "lastName": "[lastname]"

 },

 "statusId": [statusid],

 "userId": [userid]

 }

],

 "id": 1

}

As you can see, this request consists of the following basic structure:

• Method

It will define the method (in this case ‘Otys.Services.CandidateService.add’), so that we know

you are creating a new candidate.

• Authentication

It will then pass the session token you have received during the authentication process, so

that we know you are ‘good people’. In most cases if you create a new record and do not

assign an owner of the newly created record (in this case ‘userId’) we will make the user

linked to your API key the owner.

• Record ID

Since you are updating an existing record, we want to know which record you want us to

update. In this case (for updating a candidate), you will need to provide the candidate OUID.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 20

• Fields

It will then pass the fields which are needed to update the record, so that we ‘update all

fields’ as desired. Normally you would only provide us fields that you actually want to be

changed (fields that are not provided will stay intact).

The request above will result in a response as follows:

{

 "result": {

 "Person": []

 },

 "id": 1

}

2.5.6 Deleting records
A basic update request to update an existing record will be as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.CandidateService.delete",

 "params": [

 "[sessiontoken]",

 "[candidateouid]"

],

 "id": 1

}

As you can see, this request consists of the following basic structure:

• Method

It will define the method (in this case ‘Otys.Services.CandidateService.delete’), so that we

know you are deleting a candidate.

• Authentication

It will then pass the session token you have received during the authentication process, so

that we know you are ‘good people’.

• Record ID

Since you are deleting a record, we want to know which record you want us to delete. In this

case (for deleting a candidate), you will need to provide the candidate OUID.

The request above will result in a response as follows:

{

 "result": {

 "Person": []

 },

 "id": 1

}

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 21

2.6 Content languages
The OTYS system is ‘multilingual’ in two different ways:

• The application is available in multiple ‘application languages’. So users of OTYS Go! are able

to see the same contents, however the application language (so the ‘buttons’, ‘labels’ and

those kinds of elements) can be different.

• Various entities & many fields are available in in multiple ‘content languages’. If you for

example have one vacancy you want have published in both Dutch & French; you are able to

store various fields (job title, job description, job requirements, etc) in these multiple

languages. This way the OTYS system knows it is the same record (candidates applying to

both the Dutch & French language version will appear in the same ‘pipeline’ of the same

vacancy.

From an ‘API perspective’ the application language is not really interesting (except maybe if you open

OTYS Go! and seeing all kinds of Dutch labels, knowing that you can ‘switch’ it to English); however

the content language is important. Many clients use online one content language, however if you are

building an integration for a client who uses multiple content languages it is of course important to

retrieve, create & update the records in the correct language.

Set current content language for follow up requests

You do NOT need to define the content language in every request. Instead, you can define your

‘current content language’ in a separate request. All operations after this request are then executed

in that content language (until you tell us to switch to another language). For this purpose, most

services have a ‘setLanguage’ method; which you can use if you want to retrieve, add or update

language specific contents.

A basic update request to update the current content language will be as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.[dataservice].setLanguage",

 "params": [

 "[sessiontoken]",

 "[language]"

],

 "id": 1

}

As you can see, this request consists of the following basic structure:

• Method

It will define the method, so that we know you are changing the content language. You will

change [dataservice] into the applicable data service. If you for example want to set the

content language for the ‘VacancyService’ data service, the method will be

‘Otys.Services.VacancyService.setLanguage’.

• Authentication

It will then pass the session token you have received during the authentication process, so

that we know you are ‘good people’ AND we are changing the current content language of

the user linked to your API key (so that it does not change anything for other users).

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 22

• Language

Finally we of course want to know the language you want to set. Languages are expected in

ISO 639-1 format. Supported content languages currently are:

o cs: Czech

o de: German

o en: English

o es: Spanish

o fr: French

o nl: Dutch, Flemish

o us: English (US)

The request above will result in a response as follows:

{

 "result": true,

 "id": 1

}

Define specific language for specific request

Alternatively, it is also possible to use the ‘Otys.Services.LanguageService.wrapRequest’-method to

‘wrap’ your request and force the content language in which the request will be executed. This will

‘overrule’ the currently set content language.

A basic request which retrieves the vacancy title in a specific language will be as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.LanguageService.wrapRequest",

 "params": [

 "[language]",

 {

 "jsonrpc": "2.0",

 "method": "Otys.Services.VacancyService.getDetail",

 "params": [

 "[sessiontoken]",

 "[vacancyouid]",

 {

 "title": 1

 }

],

 "id": 1

 }

],

 "id": 1

}

As you can see, this request consists of the following basic structure:

• Wrapper Otys.Services.LanguageService.wrapRequest with defined language

Your original request should be wrapped in this Otys.Services.LanguageService.wrapRequest

and you should define the [language] in which you expect the request to be executed.

Languages are expected in ISO 639-1 format. Supported content languages currently are:

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 23

o cs: Czech

o de: German

o en: English

o es: Spanish

o fr: French

o nl: Dutch, Flemish

o us: English (US)

• Original request

It will then include the original request. In this example it is a request of method

‘Otys.Services.VacancyService.getDetail’ to retrieve details of a specific vacancy, passing the

[sessiontoken] and [vacancyouid] and requesting the field ‘title’.

The request above will result in a response as follows:

{

 "result": {

 "title": "[vacancytitle]"

 },

 "id": 1

}

2.7 Option lists
As mentioned in paragraph 2.7, some fields (normally pick lists in the application) include ‘option

lists’. For these fields it is of course important to know the available options, so that you can provide

us with the correct contents (provide the correct ID when updating a candidate status) or so that you

can interpret the provided contents better (know the name of the user when retrieving the owner ID

of a candidate).

We have a generic method ‘getOptionLists’ which can be used in most data services. A getOptionLists

request will be as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.[dataservice].getOptionLists",

 "params": [

 "[sessiontoken]",

 [

 "[field]",

 "[field]"

]

],

 "id": 1

}

As you can see, this request consists of the following basic structure:

• Method

It will define the method, so that we know you are retrieving the options. You will change

[dataservice] into the applicable data service. If you for example want to retrieve options for

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 24

the ‘CandidateService’ data service, the method will be

‘Otys.Services.CandidateService.getOptionLists’.

• Authentication

It will then pass the session token you have received during the authentication process, so

that we know you are ‘good people’.

• Fields

You can then pass one or multiple field names that ‘have options’ to retrieve the options of

that list.

The request above will result in a response as follows:

{

 "result": {

 "[field]": {

 "[id]": "[value]",

 "[id]": "[value]",

 "[id]": "[value]"

 },

 "[field]": {

 "[id]": "[value]",

 "[id]": "[value]",

 "[id]": "[value]"

 }

 },

 "id": 1

}

Although the structure mentioned above might differ a bit for specific option lists, you will most

probably get the point. You will receive the requested lists including their IDs & values.

2.8 Retrieving specific requests using OTYS Go!
As mentioned before, the OTYS Go! application recruiters use fully relies on the OTYS web service

(OWS). If a user is taking specific actions in OTYS Go! (for example retrieving vacancies or creating a

candidate), OWS requests are executed ‘on the background’.

Because the OTYS Go! system was build ‘API first’, our web services are (as you will have experienced

now) extensive. Very extensive. Everything a user is able to do ‘database wise’ from the OTYS Go!

system is available in OWS. On the one hand this creates a lot of possibilities for partners integrating

using OWS. On the other hand it makes it more difficult to find the correct request. Of course we do

have the previously mentioned (long) list with available data services and fields that can be used in

these data services, however there is an ‘easier way’.

A very ‘easy way’ of retrieving a very specific request is by executing specific actions in the OTYS Go!

application (for example updating the candidates UTM tags) and then intercept the request. This way

you immediately know what the exact request is of that specific user interaction, which you can then

adjust if you like.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 25

You can use any HTTP web debugging proxy method (like Fiddler, Charles or build in browser

solution) you prefer. Below you will find a step-by-step instruction on how to intercept the request

using Google Chrome’s build in functionality (not because it is ‘the best’, but because you probably

already have this on your computer):

1. Open Google Chrome;

2. Open the provided OTYS Go! URL (see paragraph 2.1);

3. Go to the interface in OTYS Go! just where you will execute the ‘action’, however don’t

execute the action yet. So if you for example want to know how to update specific

information in a candidate record; go to the place where you can update the information, fill

in the fields but do not hit the save-icon/button yet;

4. Click on F12;

5. Open tab ‘Network’;

6. Make sure the filter below it is not active (so it shows ‘All’ requests);

7. Now execute the action (for example hit the save-icon/button);

8. You will see one or (probably) multiple requests of ‘jservice.php’. Click on the first request.

9. Open tab ‘Payload’. You will see the payload of the request and can switch between a

‘parsed’ version (which is might be easy to inspect) and a ‘source’ version (which might be

easy to copy/paste so that you can alter & try out the request).

10. If the payload mentioned above is not the desired request, you can open the next request to

see if that is the one you need.

Please note that as mentioned above a single click in the OTYS system many times leads to multiple

requests to OWS (for example first saving fields and then retrieving updated fields). If you are

intercepting the requests mentioned above for the first time, it might take a bit longer (since you are

really looking closely to every request). If you have done this a couple of times, you will become

more convenient with this process (for example if you are looking for a request to update UTM tags,

‘scan’ the request for ‘UTM’ and find it more quickly).

2.9 Create hashed links to OTYS hosted portals
As mentioned in paragraph 1.1, in most cases an OTYS client also has one or multiple websites linked

to their system. This is normally a website which is publicly available (so that the company can for

example use it to show & tell more about their company and publish their jobs), with some portals

behind a login (for candidates, customers, hiring managers and/or suppliers). This website will

interact with the OTYS system and can do so in several ways (for example the main website build,

hosted & maintained by a third party and portals build, hosted & maintained by OTYS).

If the client has a portal which is build, hosted & maintained by OTYS, it is possible to create hashed

links to these portals using the OTYS web services. This way you can for example include a link in an

email which automatically logs in the candidate or contact person and redirects that person to the

URL you provided.

Please note that these hashed links are only compatible with portals which are build, hosted &

maintained by OTYS. The client will most probably know if this is the case for a specific portal and in

case of doubt you can contact us at partners@otys.com providing us the URL of the portal, so we can

check if this is indeed a portal which is build, hosted & maintained by OTYS.

http://www.otys.nl/
mailto:partners@otys.com

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 26

To create a hashed link to an OTYS hosted portal, you can send us the following request:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.OCDService.createToken",

 "params": [

 "[sessiontoken]",

 "[ocdwebuserouid]",

 {

 "url": "[url]"

 },

 "[expirationdays]"

],

 "id": 1

}

As you can see, this request consists of the following fields:

• [sessiontoken]

The session token you have received during the authentication process, so that we know you

are ‘good people’.

• [ocdwebuserouid]

The OUID (OTYS unique ID) of the OCD (OTYS Central Directory) webuser that should be

automatically logged in when opening the hashed link. Although the management of OCD

webusers is not explicitly mentioned in the previous paragraphs of this chapter, we do

expect you to be able to retrieve it based upon the (generic) information provided.

• [url]

The URL (for example ‘https://www.domain.com/portal/folder/page’) that should be opened

when opening the hashed link. Please note this should be a page in the OTYS portal (so it is

for example not possible to redirect to ‘https://www.google.com’) and you are responsible

yourself for determining the logic for providing the correct URL. Specific portal pages (for

example a candidate timesheet detail page) have parametrized URLs which contain IDs you

are able to retrieve using other web service calls). You are responsible for the logic retrieving

the correct IDs and ‘assemble’ the correct URL.

• [expirationdays]

The number of days the hashed link should be valid. The expiration of course depends upon

your specific use case, however for security reasons we would advice you to set it to a short

period (for example ‘7’ so it is valid for a week).

The request above will result in a response as follows:

{

 "result": "[token]",

 "id": 1

}

You can now use this provided [token] to create the hashed link, by placing it in:

https://[domain]/index.php/page/ocdapp/bb/1/command/loginandredirect/token/[token]

http://www.otys.nl/
https://www.domain.com/portal/folder/page
https://www.google.com/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 27

If you have provided the [domain] of the OTYS portal and the correct [token] received from our web

services, you will see that you will be automatically logged in as the webuser and redirected to the

URL provided while creating the hashed link.

2.10 Retrieve candidate deduplication data
One of the most important entities of the OTYS system is ‘Candidates’. A candidate can apply for a

job at a specific OTYS client and can three years later apply again for another job at the same OTYS

client. Although we have processes in place to avoid creating ‘duplicate candidates’ (for example by

checking if the email address of the applicant has been used before and a fully automated GDPR

functionality), it not possible to always prevent these duplicate records. Of course having duplicate

candidate records (technically two different records, but about the same person) can cause

inconvenience for our clients. If they are checking a candidate who applied on a job yesterday, it is

useful to see the same person also applied three years ago (and the GDPR process has deleted the

data due to the candidate giving proper consent).

For these kinds of situations we have a deduplication process, which can merge candidates. This

deduplication process can both be executed manually (an OTYS Go! user hitting buttons to merge

two candidates) or executed automatically (a nightly process merging two candidates). Although this

deduplication process is of benefit of our (mutual) clients, we can understand it can cause issues in

partner integrations. For example if a candidate with ID ‘12345’ is being synced with you as a partner

and candidate record with ID ‘12345’ being merged with another candidate record with ID ‘23456’,

deleting the record with ID ‘12345’. In such situation you as a partner retrieving candidate data of

candidate with ID ‘12345’ will find that the candidate record has been deleted. This is of course fully

correct from a technical perspective, however in that case it is very useful information to know if this

candidate has been merged with a different candidate (and retrieve the ID of the remaining

candidate record).

To retrieve the deduplication data of a (deleted) candidate, you can send us the following request:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.CandidateService.retrieveDuplicateInfo",

 "params": [

 "[sessiontoken]",

 "[candidateidentifier]"

],

 "id": 1

}

As you can see, this request consists of the following fields:

• [sessiontoken]

The session token you have received during the authentication process, so that we know you

are ‘good people’.

• [candidateidentifier]

This is the identifier of the (deleted) candidate. You can provide the fields ‘uid’, ‘internalId’ or

‘personalNr’ as identifiers. We will first check if we find deduplication data based upon the

alphanumeric ‘uid’ or numeric ‘internalId’ generated automatically for every candidate in

OTYS. If we find a match, we will give you the related information. If we can not find a match,

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 28

we will check the field ‘personalNr’ which you (or our users) can fill yourself. However, please

note that in case of a conflict (for example there is a merged candidate with ‘internalId’ set

to ‘123456’ and there is a merged candidate with ‘personalNr’ set to ‘123456’ the ID

generated by OTYS (so the ‘uid’ or the ‘internalId’) will ‘win’.

The request above will result in a response as follows:

{

 "result": {

 "mergeHistory": {

 "[idSource]": {

 "mergeDateTime": "[mergeDateTime]",

 "idSource": "[idSource]",

 "ouidSource": "[ouidSource]",

 "personalNrSource": "[personalNrSource]",

 "idDestination": "[idDestination]",

 "ouidDestination": "[ouidDestination]",

 "personalNrDestination": "[personalNrDestination]"

 }

 },

 "newCandidateId": "[newCandidateId]",

 "newCandidateOuid": "[newCandidateOuid]",

 "newCandidatePersonalNr": "[newCandidatePeronalNr]"

 },

 "id": 1

}

Please note that a candidate can be deduplicated multiple times (candidate A is merged with

candidate B, candidate B is merged with candidate C). If this happens the ‘mergeHistory’-collection in

the response above will contain multiple items.

The response above consist of the following fields:

• [mergeDateTime]

The date & time when the two candidates were merged.

• [idSource]

The ‘internalId’ of the source (deleted) candidate.

• [ouidSource]

The ‘ouid’ of the source (deleted) candidate.

• [personalNrSource]

The ‘personalNr’ of the source (deleted) candidate.

• [idDestination]

The ‘internalId’ of the target (kept) candidate.

• [ouidDestination]

The ‘ouid of the target (kept) candidate.

• [personalNrDestination]

The ‘personalNr of the target (kept) candidate.

• [newCandidateId]

Since the ‘mergeHistory’-collection can contain multiple items, for your convenience one

fixed field of ‘internalId’ the new candidate (so the kept candidate after all merges).

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 29

• [newCandidateOuid]

Since the ‘mergeHistory’-collection can contain multiple items, for your convenience one

fixed field of ‘ouid’ the new candidate (so the kept candidate after all merges).

• [newCandidatePersonalNr]

Since the ‘mergeHistory’-collection can contain multiple items, for your convenience one

fixed field of ‘personalNr’ the new candidate (so the kept candidate after all merges).

Please note that we have only included fields ‘ouid’ & ‘personalNr’ in our deduplication process in

March 2024. Candidates which have been deduplicated before that will not have the full

deduplication information available.

Besides retrieving this deduplication info for candidates which have been deleted, it might also be

useful to retrieve this deduplication data for existing candidates. This way when retrieving new

candidates you can for example retrieve this deduplication data to check if you have previously

retrieved a candidate with which this candidate was ‘merged’. We have therefore also made the

‘mergeHistory’-collection available in the main service to retrieve candidate data (CandidateService),

where you are able to retrieve this data just like you are able to retrieve other candidate fields.

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 30

3. File management

In this chapter we will explain from a ‘conceptual point of view’ how you can upload & download files
using OWS and how you can connect them to a database records (for example a candidate).
Additionally we will provide a step-by-step description on how you can execute these actions using
Postman (https://www.postman.com/), an API platform used by many developers to easily test the
working of an API from a user interface (before actually starting coding the integration).

3.1 Uploading files
We will start with the process of uploading files and binding them to the correct database record.

3.1.1 Concept
Before you can upload & bind a file using OWS, you will need to have the following:

• You will need a valid OWS session token. This is the session token you have received by doing

a request using service call ‘loginByUid’ and is used by all follow up requests. Since we are

assuming you are familiar with OWS, we expect you to have this session token already.

• You will need to know the entity (for example ‘Candidates’) and the record ID (for example

the OUID of a specific candidate) you want to add the file to. Since we are assuming you

were already able to do various OWS operations (for example create a new candidate), we

expect you to have this data already.

Upload file

First step is to upload the file to our webservice and retrieve a OUID of the uploaded file. For this you

will need to do a POST request using a multipart form-data request to the OWS endpoint

https://ows.otys.nl/fileService.php (please note this is a different endpoint than your ‘normal’ OWS

requests) with two key-value pairs:

• sessionId: With as value your valid OWS session token;

• file: With as value the file you wish to upload.

If your request is successful, you will get a response in JSON format containing META data of the file:

{

 "[filename]": {

 "ouid": "[fileouid]",

 "name": "[filename]",

 "mimeType": "[filemimetype]",

 "size": [filesize]

 }

}

As you can see, this response consists of the following fields:

• [filename]: The filename of the received file, which can be used for validation purposes;

• [fileouid]: The OUID of the uploaded file on our servers. You will need this OUID for binding

the uploaded file to a specific database record (for example a candidate);

• [filemimetype]: The mime type of the received file, which can be used for validation

purposes;

• [filesize]: The size of the received file, which can be used for validation purposes.

http://www.otys.nl/
https://www.postman.com/
https://ows.otys.nl/fileService.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 31

Binding file

Once you have your file OUID, you can bind/connect it to the desired database record. Although files

are used in multiple places in OWS and there are many methods that use file OUIDs, most of the

times a file needs to be added to the ‘dossier’ of a specific entity. We will use this as an example.

Almost all OTYS clients use ‘document types’ when uploading files to their dossier. It allows them to

define ‘what kind of file’ they are adding to the dossier (for example a CV, motivation letter or

contract) which can be used for filtering, reporting and other purposes. Since these ‘document types’

is a client specific option list, you will first need to retrieve the current options. For this you will need

to do a POST request using a JSON request to the OWS endpoint https://ows.otys.nl/jservice.php

(please note this is the endpoint you use for all your ‘normal’ OWS requests) which looks as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.DocumentTypeService.getListEx",

 "params": [

 "[sessiontoken]",

 {

 "what": {

 "uid": 1,

 "name": 1,

 "forDocuments": 1,

 "forCandidates": 1,

 "forVacancies": 1,

 "forCustomers": 1,

 "forCustomerContacts": 1,

 "forTasks": 1,

 "forSales": 1,

 "forProjects": 1

 },

 "limit": 100,

 "offset": 0,

 "getTotalCount": true

 }

],

 "id": 1

}

Please note service call ‘DocumentTypeService.getList’ also allows you to use some additional fields

(the request above shows the most important & logical ones). You can see a complete overview of

available fields on https://ows.otys.nl/info/detail.php?service=Otys.Services.DocumentTypeService

(which requires you to login with your OTYS username & password).

If your request is successful, you will get a response in JSON format containing the current document

types and the requested fields per document type, which looks as follows:

http://www.otys.nl/
https://ows.otys.nl/jservice.php
https://ows.otys.nl/info/detail.php?service=Otys.Services.DocumentTypeService

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 32

{

 "result": {

 "listOutput": [

 {

 "uid": "[uid]",

 "name": "[name]",

 "forDocuments": [forDocuments],

 "forCandidates": [forCandidates],

 "forCustomers": [forCustomers],

 "forCustomerContacts": [forCustomerContacts],

 "forVacancies": [forVacancies],

 "forTasks": [forTasks],

 "forSales": [forSales],

 "forProjects": [forProjects]

 }

],

 "searchExtras": [],

 "totalCount": [totalCount]

 },

 "id": 1

}

As you can see, this response consists of the following fields:

• [uid]: This is the UID of the document type. You will need this UID when binding the file to

the record later;

• [name]: This is the name of the document type. It allows you to distinguish the various

document types ‘as a human’;

• [forDocuments]: Document types can be used for documents and notes. This is a boolean

field if the document type is configured to be used for documents. You should only use

document types when binding uploaded files to a dossier which have this field set to ‘true’;

• [forCandidates]: This indicates if the document type should be available for candidates. You

should only use document types when binding uploaded files to a candidates dossier which

have this field set to ‘true’;

• [forCustomers]: Similar as [forCandidates], but now for customers;

• [forCustomerContacts]: Similar as [forCandidates], but now for customer contacts;

• [forVacancies]: Similar as [forCandidates], but now for vacancies;

• [forTasks]: Similar as [forCandidates], but now for tasks;

• [forSales]: Similar as [forCandidates], but now for sales trajectories;

• [forProjects]: Similar as [forCandidates], but now for projects;

• [totalCount]: As you might have seen in the initial request, you are retrieving the first 100

document types (limit ‘100’, offset ‘0’). Most clients will have (much) less than 100 document

types. If the client however has over 100 document types you can either increase the ‘limit’

in your request or loop through results using this returned total count (so that if your first

response includes a total count of 255, you can do two additional requests (offset ‘100’ &

offset ‘200’) to retrieve all results.

Please note the example above only shows one document type, while in practice in most cases you

will get multiple (recursive) items in your response.

If you want to assign a document type which is currently not available in the client, it is possible to

add a new one. Although it is also possible to manage document types using OWS methods ‘add’,

http://www.otys.nl/

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 33

‘update’ & ‘delete’; since it is a ‘one time thing’ it is probably easier to do it from the OTYS Go! user

interface, by taking the following steps:

1. Open OTYS Go!;

2. Login as a Key-user (user with additional permissions to change configuration);

3. Click on the users name on the top right and choose ‘Client settings’;

4. At ‘Search setting number…’ in panel on right type in ‘GE91’ followed by enter;

5. Open setting ‘Dossier - Dossier types configuration’ (GE91) in the list on the left;

6. You will see a user interface to add, update & delete document types.

Now you have the file OUID and the document type UID which you want to bind to the dossier of a

specific record; you can now actually bind it to that record. For this you will need to do a another

POST request using a JSON request to the OWS endpoint https://ows.otys.nl/jservice.php (please

note this is the endpoint you use for all your ‘normal’ OWS requests) which looks as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.AttachedDocumentsService.add",

 "params": [

 "[sessiontoken]",

 {

 "[entitykey]": "[recordouid]",

 "fileUid": "[fileuid]",

 "typeId": "[typeid]",

 "subject": "[subject]"

 }

],

 "id": 1

}

As you can see, this request consists of the following fields:

• [sessiontoken]: The session token you use in every OWS request to authenticate;

• [entitykey]: The ‘entity key’ of the entity to which you want to upload the file to the dossier:

o candidateUid: If you want to link the file to the dossier of a candidate;

o relationUid: If you want to link the file to the dossier of a customer;

o relationContactUid: If you want to link the file to the dossier of a customer contact;

o vacancyUid: If you want to link the file to the dossier of a vacancy;

o taskUid: If you want to link the file to the dossier of a task;

o salesTrajectoryUid: If you want to link the file to the dossier of a sales trajectory;

o projectUid: If you want to link the file to the dossier of a project;

• [recordouid]: The OUID of the actual record. So if at [entitykey] you have for example

provided ‘candidateUId’, in this field you will provide the OUID of the candidate;

• [fileuid]: The file uid you have previously received after sending us the file;

• [typeid]: The document type ID as retrieved by the previous request;

• [subject]: The subject of the document as how it should show in the dossier (which can for

example be the document name or a structured name like ‘CV [candidatename]’.

Please note service call ‘AttachedDocumentsService.add’ (just like ‘DocumentTypeService.getList’)

allows you to use some additional fields. You can see a complete overview of available fields on

http://www.otys.nl/
https://ows.otys.nl/jservice.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 34

https://ows.otys.nl/info/detail.php?service=Otys.Services. AttachedDocumentsService (which again

requires you to login with your OTYS username & password).

If your request is successful, you will get a response in JSON format containing the current document

types and the requested fields per document type, which looks as follows:

{

 "result": "[dossierid]",

 "id": 1

}

You can use the [dossierid] in follow up requests, however you will most probably not need that.

http://www.otys.nl/
https://ows.otys.nl/info/detail.php?service=Otys.Services.%20AttachedDocumentsService

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 35

3.1.2 Examples using Postman
If you want to ‘play around’ with the process mentioned above, you can (for example) do so using

Postman (https://www.postman.com/), an API platform used by many developers to easily test the

working of an API from a user interface (before actually starting coding the integration).

Assuming you have Postman installed and are somewhat familiar to it, you can so by taking the

following steps.

First let’s upload a file to OWS:

1. Click on ‘New request’ (new tab) icon on top;

2. Change method-select (on left side of ‘Enter request URL’) to ‘POST’;

3. At ‘Enter request URL’ fill in ‘https://ows.otys.nl/fileService.php’;

4. Open tab ‘Body’ below it;

5. Select radio button ‘form-data’ below it;

6. At first key-field fill in ‘sessionId’;

7. At value on the right of it fill in your valid OWS session token;

8. At second key-field fill in ‘file’ and click anywhere out of the field to ‘save’ it;

9. Hover over the file-key you have just entered. A select will appear on the right. Change it

from ‘text’ to ‘file’;

10. A ‘select files’ button will appear instead of the text value on the right. Click on it and select a

file from your computer;

11. Click on button ‘Send’ on top right;

12. Response will be shown at the bottom. Change select ‘HTML’ on top of the response to

‘JSON’ to see a (nicer) JSON view of the response;

13. Copy the value of the ‘ouid’-field and save it somewhere (for example in Notepad).

Image 3.1.2.1: Postman request uploading file to OWS

http://www.otys.nl/
https://www.postman.com/
https://ows.otys.nl/fileService.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 36

Now let’s check the available document types:

14. Click on ‘New request’ (new tab) icon on top;

15. Change method-select (on left side of ‘Enter request URL’) to ‘POST’;

16. At ‘Enter request URL’ fill in ‘https://ows.otys.nl/jservice.php’;

17. Open tab ‘Body’ below it;

18. Select radio button ‘raw’ below it;

19. Paste the JSON of service call ‘DocumentTypeService.getList’ as shown in paragraph 3.2.1 in

the text area below it;

20. Change the [sessiontoken] field into your valid OWS session token;

21. Click on button ‘Send’ on top right;

22. Response will be shown at the bottom. Pick a document type which has ‘forDocuments’ set

to ‘true’ and the entity you would like to add the uploaded file to the dossier (for example

‘forCandidates’) to ‘true, copy the value of the ‘uid’-field and save it somewhere (for example

in Notepad).

Image 3.1.2.2: Postman request retrieving document types

http://www.otys.nl/
https://ows.otys.nl/jservice.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 37

Now let’s bind the actual file to a dossier as a document:

23. Click on ‘New request’ (new tab) icon on top;

24. Change method-select (on left side of ‘Enter request URL’) to ‘POST’;

25. At ‘Enter request URL’ fill in ‘https://ows.otys.nl/jservice.php’;

26. Open tab ‘Body’ below it;

27. Select radio button ‘raw’ below it;

28. Paste the JSON of service call ‘AttachedDocumentsService.add’ as shown in paragraph 2.2.1

in the text area below it;

29. Change the fields [sessiontoken], [entitykey], [recordouid], [fileuid], [typeid] & [subject] to

the appropriate contents as mentioned in paragraph 2.2.1;

30. Click on button ‘Send’ on top right;

31. Response will be shown at the bottom with the ID of the created dossier item.

Image 3.1.2.3: Postman request binding file to dossier

http://www.otys.nl/
https://ows.otys.nl/jservice.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 38

3.2 Downloading files
Now you know how to upload files using OWS, we will continue with the process of downloading files

from specific database records.

3.2.1 Concept
Before you can find & download a file using OWS, you will need to have the following:

• You will need a valid OWS session token. This is the session token you have received by doing

a request using service call ‘loginByUid’ and is used by all follow up requests. Since we are

assuming you are familiar with OWS, we expect you to have this session token already.

• You will need to know the entity (for example ‘Candidates’) and the record ID (for example

the OUID of a specific candidate) for which you want to download the file. Since we are

assuming you were already able to do various OWS operations (for example create a new

candidate), we expect you to have this data again.

Find file

As mentioned in paragraph 3.2.1; files are used in multiple places in OWS and there are many

methods that use file OUIDs, however most of the times a file is added to the ‘dossier’ of a specific

entity. We will use this as an example again.

You can retrieve the documents which are attached to a dossier. For this you will need to do a POST

request using a JSON request to the OWS endpoint https://ows.otys.nl/jservice.php (please note this

is the endpoint you use for all your ‘normal’ OWS requests) which looks as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.DossierService.getList",

 "params": [

 "[sessiontoken]",

 {

 "objectEntityId": [objectEntityId],

 "objectUid": "[objectUid]",

 "restrictClass": [

 "AttachedDocs"

],

 "limit": 100,

 "offset": 0

 }

],

 "id": 1

}

As you can see, this request consists of the following fields:

• [sessiontoken]: The session token you use in every OWS request to authenticate;

• [objectEntityId]: The ‘entity ID’ of the entity for which you want download the file from the

dossier:

o Candidates: Entity ID ‘2’;

o Customers: Entity ID ‘3’;

o Customer contacts: Entity ID ‘4’;

o Vacancies: Entity ID ‘1’;

o Tasks: Entity ID ‘28’;

http://www.otys.nl/
https://ows.otys.nl/jservice.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 39

o Sales trajectories: Entity ID ‘48’;

o Projects: : Entity ID ‘158’;

• [objectUid]: The OUID of the actual record. So if at [objectEntityId] you have for example

provided ‘2, in this field you will provide the OUID of the candidate.

If your request is successful, you will get a response in JSON format containing the files attached to

the dossier. This response is quite extensive with quite a lot of fields (allowing you to pinpoint the

document you would like to download) and you will need the field ‘id_rec’ to actually download the

file.

As you might have seen in the initial request, you are retrieving the first 100 files (limit ‘100’, offset

‘0’). Most dossiers will have (much) less than 100 files. If the dossier however has over 100 document

types you can either increase the ‘limit’ in your request or loop through results using a total count (so

that if your first response includes a total count of 255, you can do two additional requests (offset

‘100’ & offset ‘200’) to retrieve all results.

To retrieve this total count, you will need to do a POST request using a JSON request to the OWS

endpoint https://ows.otys.nl/jservice.php (please note this is the endpoint you use for all your

‘normal’ OWS requests) which looks as follows:

{

 "jsonrpc": "2.0",

 "method": "Otys.Services.DossierService.getCount",

 "params": [

 "[sessiontoken]",

 {

 "objectEntityId": [objectEntityId],

 "objectUid": "[objectUid]",

 "restrictClass": [

 "AttachedDocs"

],

 "limit": 100,

 "offset": 0

 }

],

 "id": 1

}

As you can see, this request is very similar to the previous one, only difference is that the method is

‘getCount’ instead of ‘getList’ (so other fields should be filled in a similar way).

If your request is successful, you will get a response in JSON format containing which looks as

follows:

{

 "result": [result],

 "id": 1

}

Based upon the total count of [result] you can loop through the results using the previous ‘getList’-

method.

http://www.otys.nl/
https://ows.otys.nl/jservice.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 40

Download file

Now you have retrieved a file ID based upon the ‘id_rec’ field of the previously mentioned ‘getList’-

method; you are able to download the file.

You can do so by sending a simple parametrized HTTP request to the following URL:
https://ows.otys.nl/fileServiceDownload?ouid=[fileouid]&class=AttachedDocument

For authentication we have a legacy option to send the OWS session token as URL parameter

‘sessionId’; however out of security perspective we strongly advise you to send this OWS session

token as in the cookie data of HTTP headers as a cookie named ‘PHPSESSID’ with as value the OWS

session token.

3.2.2 Examples using Postman
Assuming you have Postman installed and are somewhat familiar to it, you can so by taking the

following steps.

First let’s retrieve the files of a specific dossier:

1. Click on ‘New request’ (new tab) icon on top;

2. Change method-select (on left side of ‘Enter request URL’) to ‘POST’;

3. At ‘Enter request URL’ fill in ‘https://ows.otys.nl/fileService.php’;

4. Open tab ‘Body’ below it;

5. Select radio button ‘raw’ below it;

6. Paste the JSON of service call ‘DossierService.getList’ as shown in paragraph 3.2.2 in the text

area below it;

7. Change the fields [sessiontoken], [objectEntityId], & [objectUid] to the appropriate contents

as mentioned in paragraph 3.2.2;

8. Click on button ‘Send’ on top right;

9. Response will be shown at the bottom. Pick a document, copy the value of the ‘uid’-field and

save it somewhere (for example in Notepad).

Image 3.2.2.1: Postman request retrieving files from dossier

http://www.otys.nl/
https://ows.otys.nl/fileServiceDownload?ouid=%5bfileouid%5d&class=AttachedDocument
https://ows.otys.nl/fileService.php

OTYS Recruiting Technology | www.otys.com | 07-03-2024 | page 41

Now you have the file OUID of the file you wish to retrieve, you can download the file from an

internet browser (from example Google Chrome). You can open the following URL in that browser

(where you will change [fileouid] in the ID of the field ‘id_rec’ of the previous request):

https://ows.otys.nl/fileServiceDownload?ouid=[fileouid]&class=AttachedDocument

Opening this URL ‘as is’ will return an error, since you did not authenticate yet:

Image 3.2.2.2: Browser file download error without authentication

To be able to download the file; you will need to change the session token which is automatically

generated when opening this URL, into the valid OWS session linked to the OWS session that does

allow you to download the file. This session token is stored in the cookie named ‘PHPSESSID’ and can

for example easily be adjusted using Chrome plugin EditThisCookie (which can be downloaded from

the Google Web Store). Once installed you can change the cooky by taking the following steps:

1. Click on EditThisCookie icon in your browser;

2. Open cookie named ‘PHPSESSID’;

3. Change ‘Value’ to your valid OWS session token which has access to the file;

4. Click on ‘Submit cookie changes’-icon at bottom of modal.

Image 2.2.2.3: Updating session token cookie using EditThisCookie

You can now refresh the page and you will notice the file will be downloaded.

As mentioned before, this example is to show you the process from user interfaces before making

code changes. In your final integration you will most probably send the cookie data using the

CURLOPT_HTTPHEADER option of cURL or something similar.

http://www.otys.nl/
https://ows.otys.nl/fileServiceDownload?ouid=%5bfileouid%5d&class=AttachedDocument
https://ows.otys.nl/fileServiceDownload?ouid=%5bfileouid%5d&class=AttachedDocument

